Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(16): 6924-6933, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38608723

ABSTRACT

Paralytic shellfish toxins (PSTs) produced by marine dinoflagellates significantly impact shellfish industries worldwide. Early detection on-farm and with minimal training would allow additional time for management decisions to minimize economic losses. Here, we describe and test a standardized workflow based on the detection of sxtA4, an initial gene in the biosynthesis of PSTs. The workflow is simple and inexpensive and does not require a specialized laboratory. It consists of (1) water collection and filtration using a custom gravity sampler, (2) buffer selection for sample preservation and cell lysis for DNA, and (3) an assay based on a region of sxtA, DinoDtec lyophilized quantitative polymerase chain reaction (qPCR) assay. Water samples spiked with Alexandrium catenella showed a cell recovery of >90% when compared to light microscopy counts. The performance of the lysis method (90.3% efficient), Longmire's buffer, and the DinoDtec qPCR assay (tested across a range of Alexandrium species (90.7-106.9% efficiency; r2 > 0.99)) was found to be specific, sensitive, and efficient. We tested the application of this workflow weekly from May 2016 to 30th October 2017 to compare the relationship between sxtA4 copies L-1 in seawater and PSTs in mussel tissue (Mytilus galloprovincialis) on-farm and spatially (across multiple sites), effectively demonstrating an ∼2 week early warning of two A. catenella HABs (r = 0.95). Our tool provides an early, accurate, and efficient method for the identification of PST risk in shellfish aquaculture.


Subject(s)
Aquaculture , Dinoflagellida , Harmful Algal Bloom , Marine Toxins , Workflow , Animals , Shellfish , Farms , Shellfish Poisoning
2.
ISME Commun ; 3(1): 70, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37422553

ABSTRACT

The application of meta-barcoding, qPCR, and metagenomics to aquatic eukaryotic microbial communities requires knowledge of genomic copy number variability (CNV). CNV may be particularly relevant to functional genes, impacting dosage and expression, yet little is known of the scale and role of CNV in microbial eukaryotes. Here, we quantify CNV of rRNA and a gene involved in Paralytic Shellfish Toxin (PST) synthesis (sxtA4), in 51 strains of 4 Alexandrium (Dinophyceae) species. Genomes varied up to threefold within species and ~7-fold amongst species, with the largest (A. pacificum, 130 ± 1.3 pg cell-1 /~127 Gbp) in the largest size category of any eukaryote. Genomic copy numbers (GCN) of rRNA varied by 6 orders of magnitude amongst Alexandrium (102- 108 copies cell-1) and were significantly related to genome size. Within the population CNV of rRNA was 2 orders of magnitude (105 - 107 cell-1) in 15 isolates from one population, demonstrating that quantitative data based on rRNA genes needs considerable caution in interpretation, even if validated against locally isolated strains. Despite up to 30 years in laboratory culture, rRNA CNV and genome size variability were not correlated with time in culture. Cell volume was only weakly associated with rRNA GCN (20-22% variance explained across dinoflagellates, 4% in Gonyaulacales). GCN of sxtA4 varied from 0-102 copies cell-1, was significantly related to PSTs (ng cell-1), displaying a gene dosage effect modulating PST production. Our data indicate that in dinoflagellates, a major marine eukaryotic group, low-copy functional genes are more reliable and informative targets for quantification of ecological processes than unstable rRNA genes.

4.
Microorganisms ; 9(3)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670984

ABSTRACT

Prorocentrum minimum is a species of marine dinoflagellate that occurs worldwide and can be responsible for harmful algal blooms (HABs). Some studies have reported it to produce tetrodotoxin; however, results have been inconsistent. qPCR and molecular barcoding (amplicon sequencing) using high-throughput sequencing have been increasingly applied to quantify HAB species for ecological analyses and monitoring. Here, we isolated a strain of P. minimum from eastern Australian waters, where it commonly occurs, and developed and validated a qPCR assay for this species based on a region of ITS rRNA in relation to abundance estimates from the cultured strain as determined using light microscopy. We used this tool to quantify and examine ecological drivers of P. minimum in Botany Bay, an estuary in southeast Australia, for over ~14 months in 2016-2017. We compared abundance estimates using qPCR with those obtained using molecular barcoding based on an 18S rRNA amplicon. There was a significant correlation between the abundance estimates from amplicon sequencing and qPCR, but the estimates from light microscopy were not significantly correlated, likely due to the counting method applied. Using amplicon sequencing, ~600 unique actual sequence variants (ASVs) were found, much larger than the known phytoplankton diversity from this region. P. minimum abundance in Botany Bay was found to be significantly associated with lower salinities and higher dissolved CO2 levels.

5.
Microorganisms ; 8(6)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560067

ABSTRACT

In 2016, 2017 and 2018, elevated levels of the species Alexandrium pacificum were detected within a blue mussel (Mytilus galloprovincialis) aquaculture area at Twofold Bay on the south coast of New South Wales, Australia. In 2016, the bloom persisted for at least eight weeks and maximum cell concentrations of 89,000 cells L-1 of A. pacificum were reported. The identity of A. pacificum was confirmed using molecular genetic tools (qPCR and amplicon sequencing) and complemented by light and scanning electron microscopy of cultured strains. Maximum reported concentrations of paralytic shellfish toxins (PSTs) in mussel tissue was 7.2 mg/kg PST STX equivalent. Elevated cell concentrations of A. pacificum were reported along the adjacent coastal shelf areas, and positive PST results were reported from nearby oyster producing estuaries during 2016. This is the first record of PSTs above the regulatory limit (0.8 mg/kg) in commercial aquaculture in New South Wales since the establishment of routine biotoxin monitoring in 2005. The intensity and duration of the 2016 A. pacificum bloom were unusual given the relatively low abundances of A. pacificum in estuarine and coastal waters of the region found in the prior 10 years.

6.
Sci Rep ; 9(1): 14532, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601884

ABSTRACT

Alexandrium catenella (formerly A. tamarense Group 1, or A. fundyense) is the leading cause of Paralytic Shellfish Poisoning in North and South America, Europe, Africa, Australia and Asia. The quantification of A.catenella via sxtA, a gene involved in Paralytic Shellfish Toxin synthesis, may be a promising approach, but has not been evaluated in situ on blooms of A. catenella, in which cell abundances may vary from not detectable to in the order of 106 cells L-1. In this study, we compared sxtA assay performance to a qPCR assay targeted to a species-specific region of ribosomal DNA (rDNA) and an established fluorescent in situ hybridization (FISH) microscopy method. Passing-Bablok regression analyses revealed the sxtA assay to overestimate abundances when <5 cell equivalents A. catenella DNA were analysed, but otherwise was closer to microscopy estimates than the rDNA assay, which overestimated abundance across the full range of concentrations analysed, indicative of a copy number difference between the bloom population and a culture used for assay calibration a priori. In contrast, the sxtA assay performed more consistently, indicating less copy number variation. The sxtA assay was generally reliable, fast and effective in quantifying A. catenella and was predictive of PST contamination of shellfish.


Subject(s)
DNA, Ribosomal/genetics , Dinoflagellida/genetics , Marine Toxins/chemistry , Phytoplankton , Polymerase Chain Reaction/methods , Animals , Biological Assay , Bivalvia , DNA Copy Number Variations , Geography , In Situ Hybridization, Fluorescence , Mice , Regression Analysis , Species Specificity
7.
Microorganisms ; 7(8)2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31362398

ABSTRACT

In marine ecosystems, dinoflagellates can become highly abundant and even dominant at times, despite their comparatively slow growth rates. One factor that may play a role in their ecological success is the production of complex secondary metabolite compounds that can have anti-predator, allelopathic, or other toxic effects on marine organisms, and also cause seafood poisoning in humans. Our knowledge about the genes involved in toxin biosynthesis in dinoflagellates is currently limited due to the complex genomic features of these organisms. Most recently, the sequencing of dinoflagellate transcriptomes has provided us with valuable insights into the biosynthesis of polyketide and alkaloid-based toxin molecules in dinoflagellate species. This review synthesizes the recent progress that has been made in understanding the evolution, biosynthetic pathways, and gene regulation in dinoflagellates with the aid of transcriptomic and other molecular genetic tools, and provides a pathway for future studies of dinoflagellates in this exciting omics era.

8.
Front Microbiol ; 9: 1223, 2018.
Article in English | MEDLINE | ID: mdl-29951046

ABSTRACT

Single stranded DNA viruses have been previously shown to populate the oceans on a global scale, and are endemic in microbialites of both marine and freshwater systems. We undertook for the first time direct viral metagenomic shotgun sequencing to explore the diversity of viruses in the modern stromatolites of Shark Bay Australia. The data indicate that Shark Bay marine stromatolites have similar diversity of ssDNA viruses to that of Highbourne Cay, Bahamas. ssDNA viruses in cluster uniquely in Shark Bay and Highbourne Cay, potentially due to enrichment by phi29-mediated amplification bias. Further, pyrosequencing data was assembled from the Shark Bay systems into two putative viral genomes that are related to Genomoviridae family of ssDNA viruses. In addition, the cellular fraction was shown to be enriched for antiviral defense genes including CRISPR-Cas, BREX (bacteriophage exclusion), and DISARM (defense island system associated with restriction-modification), a potentially novel finding for these systems. This is the first evidence for viruses in the Shark Bay stromatolites, and these viruses may play key roles in modulating microbial diversity as well as potentially impacting ecosystem function through infection and the recycling of key nutrients.

9.
Front Microbiol ; 9: 3153, 2018.
Article in English | MEDLINE | ID: mdl-30619217

ABSTRACT

Paralytic shellfish toxin producing dinoflagellates have negatively impacted the shellfish aquaculture industry worldwide, including in Australia and New Zealand. Morphologically identical cryptic species of dinoflagellates that may differ in toxicity, in particular, species of the former Alexandrium tamarense species complex, co-occur in Australia, as they do in multiple regions in Asia and Europe. To understand the dynamics and the ecological drivers of the growth of each species in the field, accurate quantification at the species level is crucial. We have developed the first quantitative polymerase chain reaction (qPCR) primers for A. australiense, and new primers targeting A. ostenfeldii, A. catenella, and A. pacificum. We showed that our new primers for A. pacificum are more specific than previously published primer pairs. These assays can be used to quantify planktonic cells and cysts in the water column and in sediment samples with limits of detection of 2 cells/L for the A. catenella and A. australiense assays, 2 cells/L and 1 cyst/mg sediment for the A. pacificum assay, and 1 cells/L for the A. ostenfeldii assay, and efficiencies of >90%. We utilized these assays to discriminate and quantify co-occurring A. catenella, A. pacificum, and A. australiense in samples from the east coast of Tasmania, Australia.

10.
ISME J ; 10(1): 183-96, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26023869

ABSTRACT

Modern microbial mats are potential analogues of some of Earth's earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic next-generation sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Seawater/microbiology , Animals , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Australia , Bacteria/classification , Bacteria/metabolism , Bays/chemistry , Bays/microbiology , Ecosystem , High-Throughput Nucleotide Sequencing , Metagenome , Metagenomics , Seawater/analysis , Sodium Chloride/analysis , Sodium Chloride/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...